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Abstract. Within the approach of low-transparency barriers, the tunnelling of electrons through
a double-barrier system taking into account their Coulomb interaction in the interbarrier space (a
quantum well) has been considered. The state of the electrons in the quantum well is supposed
to beN -fold degenerate. It was shown that the dependence of the tunnelling current on the
applied voltage has a steplike form at low temperatures and has a threshold in the region of
small applied voltages. The system considered also exhibits bistability properties.

1. Introduction

Resonant electron tunnelling of particles through a system of double potential barriers is
very sensitive to the position of electronic states in a quantum well [1–3]. This circumstance
can be used for effective governing of the tunnelling process. For example, it is possible
to change the potential field in the well by accumulation of electric charge in the system
under tunnelling [4]. This process supposes the existence of a large number of electronic
states in the interbarrier space. Actually such a condition requires that the system has a
macroscopic size for which a concept of electric capacitance can be introduced [5]. In the
case of a small-area quantum well one should consider electron–electron interaction using
the quantum mechanical description with account of its influence on the tunnelling. For
electrons that are tunnelling through a quantum dot, this problem has been considered in
reference [6]. In particular, it was shown that the conductance oscillations are approximately
periodic only for a large number of electrons. It was predicted that for a small number of
electrons a ‘shell’ structure can be observed in the oscillations. The case with a small
number of electrons is the most interesting one. As will be shown below, the influence of
Coulomb interaction on the tunnelling process substantially increases when the states in the
quantum well become degenerate. We shall consider this problem for the case of anN -fold-
degenerate electronic state, in which the accumulation of up toN electrons is possible. We
confine our analysis to detailed consideration of the cases of doubly and triply degenerate
states. The inclusion of interaction between electrons can lead to some regularities typical
of nonlinear tunnelling, e.g. to a steplike form of the current–voltage characteristics, and to
tunnelling bistability. Study of fluctuations in these systems shows that they can be virtually
suppressed. This is typical of double-level systems [7].

2. The Hamiltonian of the system

As the model of the double-barrier tunnelling system, we will consider a structure with the
energy profile shown in figure 1. The Hamiltonian describing the tunnelling of electrons
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Figure 1. The energy profile of a double-barrier system with the applied voltageV .

through such a structure can be chosen to have the form

H = H0+HW +HT . (1)

The first term of this Hamiltonian

H0 =
∑
kσ

εL(k)a
+
kσ akσ +

∑
pσ

εR(p)a
+
pσ apσ (2)

describes electrons in the left-hand electrode–emitter (the first term) and in the right-hand
electrode–collector (the second term), respectively (regions 1 and 3 in figure 1). Here
a+kσ (akσ ) and a+pσ (apσ ) are the creation (annihilation) operators for the electrons in the
emitter and the collector, respectively,εL(k) = εL+ h̄2k2/2mL is the energy of electrons in
the emitter,h̄k andmL are their quasimomentum and effective mass, respectively, andσ is
the electron spin. For the collector, with an external potentialV applied across the system
taken into account, we haveεR(p) = h̄2p2/2mR + εR − V , h̄p being the quasimomentum
andmR the effective mass. The HamiltonianHW describes the electronic states in the
quantum well (region 2 in figure 1). We consider the case in which the quantum well has
anN -fold-degenerate state. In this case,HW can be written in the form

HW =
∑
α

E0a
+
α aα +

1

2

∑
α1α2

Vα1α2a
+
α1
a+α2
aα2aα1 (3)

whereα = (l, σ ), σ is the spin number, andl is the number of the quantum state, taking
values from 1 toN . The energy of the degenerate state in the well, with account taken
of the applied voltage, is written as follows:E0 = ε0 − γV , whereε0 is the energy of
the resonant state in the quantum well, andγ is a factor depending on the profile of the
potential barriers (for identical barriers,γ = 0.5), andVα1,α2 is a matrix element for the
electron–electron interaction in the interbarrier space. For simplicity, we approximate this
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element by a positive constantVα1,α2 = U corresponding to repulsion. The HamiltonianHT
describing the tunnelling of electrons through the barriers has the conventional form [8]

HT =
∑
kα

Tkαa
+
kσ aα +

∑
αp

Tpαa
+
pσ aα + c.c. (4)

where Tkα and Tpα are the matrix elements for tunnelling through the emitter and the
collector, respectively. In the general case, they depend on the applied voltage.

3. The density of states

The density of statesρ(E) in the quantum well can be defined by using the retarded Green’s
functionG(α, α,E):

ρ(E) = − 1

π

∑
α

ImG(α, α,E) (5)

whereG(α, α,E) is the Fourier transform of the retarded Green’s function:

G(α, α, t) = −iθ(t)〈[a+α (t), aα(0)]+〉 (6)

and θ(t) is the unit Heaviside function. Using the HamiltonianHW , the Green’s function
can be calculated exactly. So for the state of quantum numberα, one can obtain

G(α, α,E) = 1

(E′ − E0)

1+
2N−1∑
m=1

∑
α1,...,αm 6=α
α1 6=α2 6=···6=αm

m∏
m1=1

nαm1

U

E′ − E0−m1U

 (7)

with E′ = E + iη for η → +0. Herenα = 〈a+α aα〉 are the mean values of the occupation
numbers of the stateα. The Green’s function has poles atEm = E0 + mU , where
m = 0, 1, 2, . . . ,2N−1. Thus, the electron–electron interaction leads to the splitting of the
states in the quantum well. New states are separated by the gapU . Using equation (7), we
can calculate the density of states in the interbarrier space. It depends on the occupation
numbersnα which are functions of the applied voltage, and hence depend on its value. This
is the reason behind the nonlinearity of the tunnelling.

4. Occupation numbers for quantum states in the well

If we apply a constant external voltage to the system, a nonequilibrium steady-state
distribution of electrons sets in. We assume that the electron distribution functions in
the electrodes are at equilibrium by virtue of their large volumes, but that their chemical
potentials change. The latter are connected through the relationµL − µR = V (where
µL andµR are the chemical potentials of the emitter and the collector, respectively). The
electron distribution functiong(E) in the quantum well is essentially nonequilibrium. It can
be determined from the condition of equality of the tunnelling current through the emitter
and the collector [8, 9], and has the form

g(E) = 1

0(E)
[0L(E)fL(E)+ 0R(E)fR(E)] (8)
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Figure 2. The dependence of the electron energy distribution functiong0 in the quantum well
on the applied voltageV for various values of the ratioαL/αR : 30 (curve 1); 3 (curve 2);
1 (curve 3).

where

0(E) = 0L(E)+ 0R(E)
0L(E) =

∑
k

|Tkα|2δ[E − εL(k)]

0R(E) =
∑
p

|Tpα|2δ[E − εR(p)].
(9)

fL(E) and fR(E) are electron distribution functions in the emitter and the collector,
respectively. The occupancy of the states in the quantum well can be determined with
the help of the expression [10]

nα = − 1

π

∫
dE g(E) ImG(α, α,E). (10)

As follows from (7), the expression fornα does not depend on the indexα. Therefore, the
mean values of the occupation numbers are also independent of the number of the quantum
state, and we can assume thatnα = n. Thus, we finally obtain

n = F(n) (11)

where

F(n) =
2N−1∑
m=0

Cm2N−1gm(1− n)2N−1−mnm Cm2N−1 =
(2N − 1)!

m!(2N − 1−m)! .

The functionsgm = g(Em) determine the occupancy of the new states. Thus we have
obtained the algorithmic equation of power 2N − 1 for the occupation numbersn. In the
general case, this equation can have several solutions in the interval 06 n 6 1. According
to equation (11), whengm = g we getn = g.
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In the one-dimensional case, in which the matrix elements of the tunnelling are
independent of the momentum, the functions0L(E) and0R(E) can be approximated by
the value [11]

0L,R = αL,R
√
E − εL,R(0). (12)

HereαL andαR are the proportionality factors for the emitter and the collector, respectively.
Substituting (12) into (8) and taking into account that

fL,R =
[

exp

(
E − µL,R
kBT

)
+ 1

]−1

(13)

wherekB is Boltzmann constant andT is the temperature, we obtain an expression for the
electron distribution functiongm. The dependence ofg0 on the applied voltage for various
values of the ratioαL/αR and kBT /ε = 0.001 is shown in figure 2.ε is a normalizing
constant having the order of magnitudeµ. The functionsgm have the same form, but are
displaced bymU on the energy scale.

Figure 3. The dependence of the population densityn of the quantum well on the applied
voltageV for kBT /ε = 0.01 in the case whereN = 2.

For more detailed consideration of the properties of equation (11), we will consider
particular cases.

4.1. The doubly degenerate state(N = 2)

In this case, an analysis of equation (11) shows that in the interval 0< n < 1 it has three
solutions forg0 = g1 = 0, i.e., when two lower states are vacant. These solutions have the
form

n1 = 0

n2,3 = −3

2

g2

g3− 3g2
±
√

9g2
2 + 4(g3− 3g2)

4(g3− 3g2)2
.

(14)
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On imposing the condition 0< n < 1, expression (14) leads to

0<
3g2

3g2− g3
< 2

9g2
2 − 4(3g2− g3) > 0.

(15)

These inequalities, equations (15), are compatible when

g2 >
2

3
(1+

√
1− g3) g3 > 3/4. (16)

Thus, equation (11) has three solutions when the values ofg1 andg3 are close to unity. The
two solutionsn1 andn3 are stable, while the third solutionn2 is unstable. The stable states
correspond to the cases in which the well either does not contain electrons or contains four
electrons occupying two upper levels. The latter is possible since the system is essentially
nonequilibrium. A plot of the dependence of the occupancyn on the applied voltage at low
temperature(kBT /ε = 0.01), and for the parametersαL/αR = 33.3, γ = 0.5, ε0/ε = 1.2,
U = 0.2/ε, obtained by solving equation (11), is represented in figure 3. It can be seen
that as the applied voltage increases, the occupancy of the quantum well increases stepwise
due to sequential occupation of split states. After the attainment of a certain critical value
V2, the occupation drops abruptly to zero due to the departure of the states in the quantum
well from resonance. With decreasing voltage (from the value attained before), a jump of
the occupancy will be observed at a lower value of the voltageV1. Thus, the voltage range
from V1 to V2 contains a bistability region, which is connected to the removal of electrons
from the lower levels and to their attachment to the upper split states.

Figure 4. The dependence of the population densityn of the quantum well on the applied
voltageV in the case whereN = 3 for various values of the chemical potentialµ/ε: 1.0
(curve 1); 0.5 (curve 2); 0.3 (curve 3).
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4.2. The triply degenerate state (N=3)

In the case of the triply degenerate state in the quantum well, the dependence of the
occupancyn on the applied voltage is more complicated. This dependence is shown in
figure 4 for the same values of the parameters as in figure 3. In this case equation (11) has
a solution with the bistability state of the tunnelling at lower concentrations of charge carriers
(see curves 2 and 3 in figure 4 forµ/ε = 0.5 and 0.3). In the case whereµ < U , only one
term will remain in the expression forF(n). Equation (11) has several solutions in the range
0 6 n 6 1 when the functionB(n) = F(n)/n satisfies the condition maxB(n) > 1. For
example, let only one term with energyE2 be unequal to zero inF(n). Then equation (11)
takes on the form

n = 10g2(1− n)3n2. (17)

This equation has three solutions wheng2 > 0.948. Using the dependence ofE2 =
ε0 − γV + 2U on the applied voltage, we can find the interval of voltages over which the
process of tunnelling is bistable:

ε0+ 2U − µ
γ

< V <
ε0+ 2U

γ
. (18)

The dependence ofn on V for µ/ε = 0.15 andαL/αR = 333.3 is shown in figure 5. It can
be seen in figure 5 that steps are transformed to hollows, but the bistability is conserved. The
region of bistability occupies the interval 2.9< V < 3.2, which agrees with inequality (18).
For this range of voltages, the well can be occupied by three electrons or be empty. It is
worth mentioning that the state with the energyE2 is the only state for which the process of
tunnelling may be bistable forU < µ in the case whereN = 3. In this case, the bistability
range (the right-hand peak in figure 5) does not overlap with the interval of voltages for
which the tunnelling process is one valued.

Figure 5. The dependence of the population densityn of the quantum well on the applied
voltageV in the case whereN = 3 for the chemical potentialµ/ε = 0.15,U/ε = 0.2, and the
ratio aL/aR = 333.3.

5. The tunnelling current

In the case of a constant applied voltage, the tunnelling current through the double-barrier
structure can be calculated in various ways (see, for example, references [9, 11]). The
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Figure 6. The dependence of the tunnelling currentIcd/I0 (I0 = e/h̄) on the applied voltage
V for various temperatureskT /ε: 0.01 (curve 1); 0.03 (curve 2); 0.05 (curve 3).

following simple expression was obtained for this quantity:

Jcd = e

h̄

∫
dE

0L(E)0R(E)

0(E)
[fL(E)− fR(E)]ρ(E) (19)

wheree is the electronic charge. For a low barrier transparency,0 � U , the density of
states can be calculated by using formulae (5) and (7):

ρ(E) = 4
2N−1∑
m=0

Cm2N−mδ(E − Em). (20)

Then, the formula (19) can be transformed to

Jcd = e

h̄

2N−1∑
m=0

0R(Em)0L(Em)

0(Em)
{fL(Em)− fR(Em)}(1− n)2N−1−mnmCm2N−1. (21)

We have restricted ourselves to the case of the passage of the tunnelling current through the
doubly degenerate state of the quantum well (N = 2). The results of numerical calculations
of Jcd(V ) for the same parameters as were used for constructing the curves in figure 3
are illustrated in figure 6, for different values of the temperature. The steplike form of the
dependence of the current on the applied voltage is due to the splitting of the degenerate
levels. A bistability region observed at high voltage is due to the attachment of electrons
to the upper energy levels.

6. Conclusion

Thus, the interaction between the electrons in a quantum well having a degenerate state
results in conductance oscillations of the tunnelling system with a period proportional to
the value of the Coulomb interactionU . The latter is connected to the splitting of a
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degenerate electronic state by the Coulomb interaction. The steplike form of the current–
voltage characteristic and the nature of its threshold resemble what one would expect for
single-electron tunnelling [11] to a certain extent. The resemblance becomes even stronger
if we model the quantum well by a sphere of radiusb and the matrix elementU of the
interaction by the averaged Coulomb potential:

U = 3

2

e2

ε0b
. (22)

Hereε0 is the dielectric permittivity of the sphere. If we use the classical definitionC = ε0b

of the electric capacitance of a sphere, expression (22) can be written in the form

U = 3

2

e2

C
. (23)

This expression, which determines the magnitude of the current step, is well known in
the theory of single-electron tunnelling. In our approach, however,C is interpreted as the
capacitance of the well rather than the total capacitance at the barriers.

An important feature of the model under consideration is its stability against fluctuation.
Indeed, a simple analysis of the fluctuations of the occupancies of the state of the well leads
to

〈δn2〉 = 〈(n̂− n)2〉 = n(1− n). (24)

For the region of bistability,n assumes values close to unity or zero. For these values,√
〈δn2〉 � n. However, in the region of current steps, the fluctuations are comparable

with the charge. This conclusion is confirmed experimentally [12]. As the temperature
increases, the steps are blurred rapidly due to the blurring of the Fermi level. The region
of their existence is limited by the conditionkT � U . The temperature dependence of the
bistability is associated with variations of the functionsgm. The latter are less sensitive to
temperature. Bistability disappears when maxg(E) < 3/4. This condition is satisfied even
at high temperatures comparable withµ. For this temperature range, the dependence on
spin can be neglected and the situation becomes similar to that analysed in reference [2].
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